연구 Highlight

WS2-embedded MXene/GO hybrid nanosheets as electrodes for asymmetric supercapacitors and hydrogen evolution reactions

  • 저자명

    Sajjad Hussain, Dhanasekaran Vikraman, Zulfqar Ali Sheikh, Muhammad Taqi Mehran, Faisal Shahzad, Khalid Mujasam Batoo, Hyun-Seok Kim, Deok-Kee Kim, Muhammad Ali, Jongwan Jung

  • 저널명

    Chemical Engineering Journal

  • 게재권/집

    452(2023)

  • 페이지

    139523-1 ~ 15

  • 발표일

    2023-01-15

  • URLhttps://doi.org/10.1016/j.cej.2022.139523
MXene-related materials are auspicious electrodes for energy storage/conversion application due to their various features, including large surface area, high metallic conductivity, and fast redox activity; however, their surface aggregation and oxidation have significantly restricted their application in various industries. This study demonstrated the fabrication of porous WS2 nanosheets-interconnected MXene/GO (WS2@MXene/GO) nanocomposites using a simple hydrothermal reaction for electrochemical supercapacitors and water splitting reactions. The assembled WS2@MXene/GO nanocomposites electrode produced a superior specific capacitance of ∼ 1111F g−1 at 2 A/g applied current. Further, the asymmetric device constructed using the nanocomposite delivered the high specific energy of ∼ 114 Wh kg−1 and asymmetric capacitance of 320F g−1 along with an exceptional cycling stability. The WS2@MXene/GO nanocomposites electrocatalyst exhibited low overpotentials of 42 and 45 mV and small Tafel slopes values of 43 and 58 mV.dec−1 for hydrogen evolution reaction in acidic and alkaline medium, respectively. In addition, density functional theory (DFT) approximations validated the observed experimental results using density of states, Gibbs free energy for H-adsorption, and quantum capacitance calculations.