연구 Highlight

Polymer-dispersed liquid-crystal-based switchable glazing fabricated via vacuum glass coupling

  • 저자명

    Naila Nasir, Hyeryeon Hong, Malik Abdul Rehman, Sunil Kumar and Yongho Seo

  • 저널명

    RSC Advances (IF 3.119)

  • 게재권/집

    53, 2020

  • 페이지

    32225~32231

  • 발표일

    2020-09-01

  • URLhttps://doi.org/10.1039/D0RA05911K
Polymer-dispersed liquid crystals (PDLCs) exhibiting transmittance switching are utilized for preserving energy and protecting privacy. Here we prepared a typical PDLC mixture from a commercially available polymer and liquid crystal with nano-beads. A wire-bar coater was used to coat the PDLC mixture on indium-tin-oxide-coated glass, and a PDLC cell was assembled by coupling another glass in a vacuum, instead of a polymer film. Uniform glass-based PDLCs were fabricated successfully with an area of 15 × 15 cm2, while an injection process with capillary action was not available for this large-scale device fabrication. The switching behavior of the cells was characterized by ramping the AC voltage, and a transmittance change of ∼70% was measured. In a typical roll-to-roll process, only flexible polymer films have been used in lamination, in which deterioration in transparency occurs over the course of time, reducing the efficiency. In this study, to improve the optical properties, PDLC switchable glazing is fabricated directly onto glass substrates instead of onto plastic polymers. This PDLC switchable glazing, exhibiting low haziness and wide-angle vision, can be fabricated at a large scale by a vacuum-coupling process, with potential use as glass windows for energy-efficient buildings.