연구 Highlight

High Volumetric Energy and Power Density Li2TiSiO5 Battery Anodes via Graphene Functionalization

  • 저자명

    Jin-Myoung Lim, Sungkyu Kim, Norman S. Luu, Julia R. Downing, Mark T.Z. Tan, Kyu-Young Park, Jacob C. Hechter, Vinayak P. Dravid, Kai He, and Mark C. Hersam

  • 저널명

    Matter

  • 게재권/집

    3

  • 페이지

    522~533

  • 발표일

    2020-08-05

  • URLhttps://doi.org/10.1016/j.matt.2020.07.017
The realization of lithium-ion battery (LIB) anodes with high volumetric energy densities and minimal Li plating at high rates remains a key challenge for emerging technologies, including electric vehicles and grid-level energy storage. Here, we present graphene-functionalized Li2TiSiO5 (G-LTSO) as a high volumetric energy and power density anode for LIBs. G-LTSO forms a dense electrode structure with electronically and ionically conductive networks that deliver superior electrochemical performance. Upon lithiation, in situ transmission electron microscopy reveals that graphene functionalization yields minimal structural changes compared with pristine LTSO, resulting in high cycling stability. Furthermore, G-LTSO exhibits not only high charge and discharge capacities but also low overpotentials at high rates with minimal voltage fading due to reduced formation of a solid-electrolyte interphase. The combination of highly compacted electrode morphology, stable highrate electrochemistry, and low operating potential enables G-LTSO to achieve exceptional volumetric energy and power densities that overcome incumbent challenges for LIBs.